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Onset of Rayleigh-Benard convection in binary 
liquid mixtures of 3He in4He 

By G. W. T. LEE?, P. LUCAS AND A. TYLER 
Schuster Laboratory, Department of Physics, University of Manchester, Manchester M13 9PL 

(Received 26 July 1982 and in revised form 18 July 1983) 

We describe experiments in which we have observed the onset of Rayleigh-Bhard 
convection in normal liquid 3He-4He mixtures. Evidence of overstability was seen 
when heating from below but only stationary convection was observed when heating 
from above. Measurements of the critical Rayleigh number are presented and 
compared with the predictions of current theories of marginal stability in a binary 
mixture. These experiments exemplify liquid 3He-4He mixtures as a system for the 
study of convective instabilities. 

1. Introduction 
The problem of Rayleigh-BBnard (RB) convection in a two-component fluid system 

has attracted a steady interest for many years, as can be seen from the reviews by 
Schechter, Velarde & Platten (1974) and Gershuni & Zhukovitskii (1976). An 
interesting early experimental study is that of Caldwell (1970). The problem is more 
complex than that of the one-component fluid because a gradient in the relative 
concentration of the two components can contribute to a density gradient just as 
effectively as can a temperature gradient. Furthermore, the presence of two diffusive 
modes allows either stationary or overstable flow states at the onset of convection 
depending on the magnitude of the fluid parameters, the boundary conditions and 
the competition between thermal expansion and thermal diffusion. 

Above its superfluid transition temperature T, (0.867 K < T, < 2.172 K,  depending 
on concentration), a 3He-4He liquid mixture is termed normal since i t  behaves in 
every way like a classical binary fluid mixture. Close to T, a normal mixture is a 
particularly interesting experimental system for testing theoretical ideas on RB 
convection. Such a mixture obeys exactly the same hydrodynamics as do the organic 
fluid mixtures and ionic salt solution mixtures so far investigated, even having fluid 
parameters D, DT, k, and pT of roughly similar magnitudes provided the mixture 
temperature is of the order of K or more above T,. Here D is the mass-diffusion 
coefficient, D, the thermal diffusivity, k, the thermal-diffusion ratio and PT the 
thermal-expansion coefficient. 

Close to but above T,, however, where the normal mixture still obeys the standard 
hydrodynamics, the ratio DID, diverges approximately as (T-  T,)-B. k, limits to 
about 0.6 in the zero-concentration limit, and pT, which is positive well above T,, 
falls to zero about 7 mK above T,, and then as T, is approached becomes large and 
negative. These properties, particularly the last, allow the experimenter great 
freedom in varying the fluid parameter values and the extent of the competition 
between thermal expansion and thermal diffusion simply by adjusting the mean 
concentration and temperature of the mixture. This feature of 3He-4He mixtures is 
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quite unique amongst binary fluid' 'systems, and allows the exploration of an 
extremely wide range of the dimensionless parameters necessary for a description of 
RB convection. 

Although not the subject of this report, i t  is worth remarking that below the h-point 
the superfluid mixture is equally interesting in that it can display features of a 
one-component system with a Prandtl number of order 0.1 despite a non-zero normal 
component velocity below the onset of convection (Warkentin et al. 1980; Haucke 
et al. 1981; Fetter 1981), and may possess two types of oscillatory instability 
(Steinberg 1981 b) .  Also, when a mixture of molar 3He concentration 0.675 ( X , )  is 
cooled to 0.867 K (z), it  simultaneously experiences the superfluid transition and 
phase separation. In the phase diagram of concentration and temperature this is 
called the tricritical point. At this point more unusual convective features can be 
expected (Steinberg 1981a, b ) ,  since kT diverges as (T--?)-l and D vanishes. 

Whilst the use of cryogenic fluids for these investigations may appear unnecessary 
in view of the abundance of room-temperature mixtures which are available, 
low-temperature systems offer the advantages of good thermal isolation, precision 
thermometry and short thermal response times, as summarized by Ahlers (1975). 

In  this report we confine ourselves to normal 3He-4He mixtures near the h-line. 
In  $2 the current status of the linear theory of convection in non-superfluid binary 
mixtures is reviewed. In  $ 3  we present our experimental results on the onset of 
convection in these mixtures. Section 4 is concerned with the reduction of the data 
to dimensionless form for comparison with theory, and in $5  we make some 
concluding remarks. 

2. Theory 
2.1. Nomenclature of binary-mixture models 

The equations of mass and heat transport together with the mass and conservation 
equations are (Landau & Lifshitz 1959; De Groot & Mazur 1962; Gershuni & 
Zhukovitskii 1976) 

i = -  P DVc--pDk,.T, T ( 1 )  

The above notation is that of Landau & Lifshitz (1959). From here on these 
equations will be discussed as for a normal 3He-4He mixture, but they are valid for 
any classical binary mixture. In  these equations i is the diffusion mass flux of one 
species, chosen to be 3He, and q' is the heat flux with the heat convected by the two 
diffusion fluxes subtracted off. The 3He component has mass concentration c and 
molar concentration S, mass-diffusion coefficient D and thermal-diffusion ratio kT, 
and the mixture has density p, thermal conductivity K (measured under conditions 
where i = 0 ) ,  specific heat per unit mass a t  constant pressure C,, fluid velocity ~ ( r ,  t ) ,  
and is a t  temperature T and pressure P .  The quantity A equals h-,u4, where 
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m3 f i  = (ag/an,),, define the respective partial chemical 
potentials of the W e  and 4He in solution, and m, and m4 are the atomic masses. The 
Gibbs free energy of the solution and the numbers n3 and n4 of atoms of ,He and 4He 
respectively refer to 1 g of solution. 

The configuration of the Benard cell is as follows: the fluid mixture is confined 
between two horizontal plates spaced distance d apart in the z-direction and, at least 
in an idealized geometry, unbounded in the lateral x- and y-directions. Such a 
geometry has infinite aspect ratio. 

Combining (1  )-(4) and introducing the Navier-Stokes equation in the Boussinesq 
approximation yields three coupled equations which determine the evolution of the 
system : 

and m4 ,u4 = (i3g/an4),, 

(u*V+ $)c = DV2c+ -V2T, DkT 
T 

,4 TD 
( u * V + $ ) T =  (DT+AD)V2T+-V2c,  

k ,  

(5) 

Here pL is the fluid density at the lower cell plate, g is the magnitude of the 
acceleration due to gravity, and 1’ is the fluid kinematic viscosity. The dimensionless 
quantity A is equal to k2,(aA/aC),, p / T C p .  In the approximation that the propagating 
sound mode is neglected, t,he fluid is incompressible so that div u = 0. i, is a unit vector 
pointing vertically upward in the z-direction. 

The set of equations (5)-(7) describe a ‘double-diffusive’ fluid system in that i t  
possesses two diffusive modes. However, this term is usually reserved for the special 
case k, = 0, when the fluid system then corresponds to that studied by, for example, 
Nield (1967), Huppert & Moore (1976) and Da Costa, Knobloch & Weiss (1981), 
who refer to the ensuing convection as ‘ thermohaline ’, ‘double-diffusive ’ and ‘ thermo- 
solutal ’ respectively. 

A considerable body of literature on BBnard convection exists for the case where 
the Soret, term (pDk,/T)  VT in (1) is retained but the Dufour term k , ( a d / & ) T , p i  
in (2) is omit,ted as negligible-for example Hurle & Jakeman (1971), where the 
system is termed ‘ Soret-driven thermosolutal ’, Schechter, Prigogine & Hamm (1972) 
and the review article by Schechter, Velarde & Platten (1974). This case corresponds 
to setting ,4 = 0 in the set of equations (5)-(7). 

Only recently has convection been examined where both Soret and Dufour terms 
are retained (Gershuni & Zhukovitskii 1976; Lee et a,l. 1978; Lee, Lucas & Tyler 1979; 
Gutkowicz-Krusin, Collins & Ross 1979a, b ;  Knobloch 1980), and, following this last 
author, it  would seem reasonable to term this case the ‘Soreb-Dufour’ problem, to 
which we confine ourselves in the remainder of this report. We note that Gutkowicz- 
Krusin et al. (1979a) are in error in omitting the term ADV2T in their version of our 
equation (6). The Soreb-Dufour problem is the most general, with no approximation 
being made a priori regarding the relative magnitudes of thermal coefficients. This 
is the model most appropriate to  liquid , H e 4 H e  mixtures because the large size of 
k ,  near the lambda and tricritical regions of the ( c ,  T )  plane ensures that neither the 
Soret nor the Dufour contribution can be neglected. This is demonstrated in table 
1 ,  which includes the current state o f  our knowledge on the parameters kT and A 
a t  a representative set of values of T -  TA. 
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2 .2 .  The onset of convection 

The application of a subcritical vertical heat current to an experimental cell with the 
geometry described in $2.1 leads to the establishment of opposing vertical thermal 
and concentration gradients V T  and Vc across the cell, linked by the relation 
Vc = - ( k T / T )  V T  (which arises from a zero mass flux, i = 0, normal to  the horizontal 
boundaries). Provided the direction of the heat flux and the relative magnitudes of 
the fluid parameters are favourable, a linear marginal-state analysis using (5)-(  7 )  
predicts the existence of both stationary and overstable convective states once these 
gradients exceed critical values. As the heat flux is increased in a given direction, the 
convective state first realized is the one with the smallest critical Rayleigh number. 

A calculation of the critical Rayleigh number for both stationary and oscillatory 
convection was first carried out by Hurle & Jakeman (1969, 1971) using a variational 
approach which demonstrated the existence of a branch of the solution corresponding 
to negative Rayleigh numbers. Subsequently Schechter et al. (1972) carried out an 
exact calculation for stationary convection, although the negative branch was 
omitted. Both of these sets of calculations apply to the two-component model where 
k ,  is non-zero but A is assumed negligible. However, even if A is not negligible so 
that the full Soret-Dufour problem is regained, the calculations are still valid except 
that  the dimensionless variables arising from the calculations have to be reinterpreted. 
Calculations of the critical Rayleigh number, both variational and exact for 
stationary convection and variational for oscillatory convection, have been reported 
by Gutkowicz-Krusin et al. (1979a, b)  for the Soret-Dufour model. The exact solution 
for stationary convection in this model with the negative branch omitted was also 
reported independently by Lee et al. (1979) and the details of our approach using 
normal diffusive modes are given in the Appendix. I n  si2.3 and 2.4 we bring together 
the results of all these calculations together with some further computations of our 
own. 

2.3. The critical Rayleigh number for Stationary convection 

As shown in the Appendix, application of rigid boundary conditions to the marginal 
state equations for an exact solution for stationary convection yields the condition 

where the functions f and g ,  their arguments qo(a ,7) ,  q l ( a , 7 ) ,  q2 (a ,7 )  and the 
dimensionless wavenumber a and parameter 7 are defined by (A 9)- (A 1 1 ) .  
H = D,/ {D(  1 + A )  ( 1  + l / S ) }  is a dimensionless variable that depends only on the 
thermodynamic state of the mixture. The Rayleigh number for the problem is given 

R = a473 = R , { ( l + A ) ( l + S ) + S D T / D } ,  

where RT = gd4PPT/vDT, S = - PC k T / P T  T ,  P is the vertical temperature gradient 
and PT and Pc are thermal and solutal expansion coefficients respectively. We have 
found i t  useful to define the associated Rayleigh numbers that appear to be natural 
to this problem, 

by 
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a a n 
I I1 111 

FIGURE 1.  Sketch of dependence of Rayleigh number R against dimensionless wavenumber a for 
H < - 1 and H 3 3.85 (region I), - 1 < H < 0 (region 11), 0 < H < 3.85 (region 111) for stationary 
convection. 

so that 

For any given value of H the roots of (8) provide pairs of values of a and 7, and 
hence corresponding values of the three Rayleigh numbers. The behaviour of the 
Rayleigh numbers as a is varied has three forms depending on the range in which 
H lies: H < - 1 and H 3 3.85 (region I), - 1 < H < 0 (region II), or 0 < H < 3.85 
(region 111). This behaviour is sketched in figure 1 .  The Rayleigh numbers have 
stationary values that fall into two groups depending on whether a = 0 or a =I= 0. The 
zero-a branch in region I1 corresponds to  7 < 1 ,  and is the ‘negative branch’ of 
Gutkowicz-Krusin et al. (1979a, b) ,  all other branches in all other regions corresponding 
to the form of (8) where 7 > 1 .  

The stationary values of R with their associated values of a represent critical values 
R, and a, for the onset of stationary convection provided d2)R(/da2 < 0; hence the 
zero-a value in region 111 is not in this category. The zero-a stationary values always 
correspond to R, = 720(1+ l/H),  R,, = -720, R,, = 720/H, and a, = 0, as can be 
seen by expanding (8) for small a. The non-zero-a critical values R, and a, are of 
sufficient generality and practical importance that we have independently reworked 
them with the results shown in table 2.  We used single precision arithmetic on a CDC 
Cyber 17&730 machine, which computes to 14 decimal digits. 

It follows from this discussion that zero-a critical values exist in regions I and I1 
and not in 111, while non-zero-a critical values exist in regions I1 and I11 but not 
in I. This can be seen in figures 2 and 3, where the Rayleigh numbers and a, are plotted 
respectively against H. These data are in agreement with those of Schechter et al. 
(1972) and Gutkowicz-Krusin et al. (19796) (their R is equivalent to our &), are 
independent of the omission of the Dufour term or the term ADV2T in (6), and were 
used by us (Lee et al. 1979) in a preliminary analysis of our data. 

It is worth noting that if H = 0 we regain the stationary one-component problem 
with rigid boundaries a t  fixed temperatures, since (8) becomes 

f ( Q 0 ,  Q1, Q2, a )  = 0, 

leading to a critical Rayleigh number of 1707.7618 and a critical wavenumber of 
3.1163. If (HI is large (8) becomes 

S(Q0 ,  Q 1 > 9 2 )  = 0, 

corresponding to the stationary one-component problem with rigid boundaries and 
fixed temperature gradient normal to these boundaries (Verlarde & Schechter 1972) 
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H 

-0.75 
-0.70 
-0.65 
-0.60 

-0.55 
-0.50 
-0.45 
-0.40 

-0.35 
-0.30 
-0.25 
-0.20 

-0.15 
-0.10 
-0.05 

0.00 

0.05 
0.10 
0.15 
0.20 

0.25 
0.30 
0.35 
0.40 

0.45 
0.50 
0.55 
0.60 

0.65 
0.70 
0.75 
0.80 

a, 
5.315 
5.015 
4.761 
4.543 

4.352 
4.183 
4.031 
3.894 

3.769 
3.655 
3.549 
3.451 

3.359 
3.273 
3.193 
3.116 

3.044 
2.975 
2.910 
2.848 

2.788 
2.731 
2.675 
2.622 

2.571 
2.522 
2.474 
2.428 

2.383 
2.339 
2.296 
2.255 

Rs 
4392.69 
3831.61 
3417.08 
3099.23 

2848.20 
2645.13 
2477.55 
2336.96 

2217.33 
2114.30 
2024.64 
1945.88 

1876.15 
18 13.96 
1758.15 
1707.76 

1662.04 
1620.37 
1582.20 
1547.13 

1514.77 
1484.82 
1457.02 
1431.13 

1406.96 
1384.35 
1363.14 
1343.21 

1324.43 
1306.7 1 
1289.97 
1274.11 

H 

0.85 
0.90 
0.95 
1 .oo 
1.10 
1.20 
1.30 
1.40 

1.50 
1.60 
1.70 
1 .so 

1.90 
2.00 
2.10 
2.20 

2.30 
2.40 
2.50 
2.60 

2.70 
2.80 
2.90 
3.00 

3.10 
3.20 
3.30 
3.40 

3.50 
3.60 
3.70 
3.80 

a, 
2.214 
2.175 
2.136 
2.099 

2.026 
1.955 
1.887 
1.822 

1.758 
1.696 
1.635 
1.575 

1.517 
1.459 
1.402 
1.346 

1.290 
1.234 
1.178 
1.122 

1.065 
1.008 
0.949 
0.890 

0.828 
0.764 
0.697 
0.626 

0.548 
0.460 
0.355 
0.207 

TABLE 2. The dependence of the critical Rayleigh number R, and 
critical wavelength as on the parameter H 

RS 
1259.07 
1244.79 
1231.20 
1218.26 

1194.15 
1172.1 1 
1151.90 
1133.28 

11 16.06 
1 100. 10 
1085.24 
1071.39 

1058.42 
1046.27 
1034.85 
1024.10 

101 3.95 
1004.36 
995.28 
986.67 

978.48 
970.70 
963.29 
956.21 

949.46 
943.00 
936.82 
930.89 

926.21 
919.75 
914.51 
909.46 

and leading to a critical Rayleigh number of 720 and critical wavenumber of zero 
(Hurle, Jakeman & Pike 1967). 

2.4. The critical Rayleigh number for oscillatory convection 

Unlike the onset of stationary convection, no exact solution has been published for 
the onset of oscillatory convection (also termed overstability) for the Soret-Dufour 
problem with rigid, impermeable, constant-temperature horizontal boundaries. This 
corresponds to solving the marginal-state equations (A 1)-(A 3) with =+ 0 with the 
boundary conditions (A 4)-(A 6). 

However, Gutkowicz-Krusin et al. (19793, equations (14) and (15)) have provided 
two variational expressions for the critical Rayleigh number at the onset of 
overstability, one of which has been considered previously by Hurle & Jakeman 
(1971). The Rayleigh number R in these expressions, which we denote R,, is 
equivalent to R2,/(1 + A )  or - R,,/H(l + A )  in our notation, where R,, and R,, are 
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4000 I I I I  I I I I 
\ I  1 

3000 - 

-.-.-, r-.;y - .  , , 1 d 

- - - -\-- - % - - - - - - - - - 
- 1000 

-2000 
3 4  0 1 2 -4 -3 -2 -1 

H 
FIQURE 2. H-dependence ofthe critical Rayleigh numbers R, (-), R,, (----)and R,, (-.-.-.-.-) 
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FIGURE 3. H-dependence of the dimensionless critical wavenumber a, for stationary convection 
when both boundaries are rigid, perfectly conducting and impermeable. Outside the range 
0 < H < 3.85 another branch exists for which a, is zero. 

critical values of R, and R, respectively for the onset of overstability. The integrals 
in the expressions are approximations for ease of computation in that only the first 
term in a Fourier expansion of the temperature perturbation is retained. As in the 
case of stationary convection, Gutkowicz-Krusin et al. (19796) found that even modes 
produced lower critical Rayleigh numbers than odd modes. In contrast with the onset 
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critical values of R, and R, respectively for the onset of overstability. The integrals 
in the expressions are approximations for ease of computation in that only the first 
term in a Fourier expansion of the temperature perturbation is retained. As in the 
case of stationary convection, Gutkowicz-Krusin et al. (1979b) found that even modes 
produced lower critical Rayleigh numbers than odd modes. In  contrast with the onset 
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LLT GCR 

C XI 

T T 
1) D 
I' T k 
K h 
PT a 
A -P  
I1 K7,/ 7' y, 

TABLE 3 .  Comparison of notation used by us (LLT) and Gutkowicz-Krusin et al. (1981) ( M X )  

lit, = RT(l  + A )  (1 +S), R = K , - R ,  

4 

4 s  

&) Theoretic.al values of R, R, and K, at the onset of stationary convection 

:"I Theoretical valurs of I?. R, and R, at the onset of oscillatory convection 

K,,,,, = rxperimentally detrrmined value of H, at the onset of convection 

R,, 

4: = K 2 , / ( 1  + A )  

rrABI,R 4 Ragleigh-number definitions used in this paper 

of stationary convection. thc critical Itaylrigh number depends not only on H ,  but  
also on tht. I'randtl numbcr f'r = v / D T ,  a modified Schmidt number AS?' = v / B (  1 + A )  
arid A .  Table 3 lists the correspondence between our notation and tha t  of Gutkowicz- 
Krusin ef  al. (1079a, h ) .  Table 4 lists the definition of the different Rayleigh numbers 
used in this report. Kotc that  the l'rantltl numbcr used by these authors should have 
the abovc dcfinition. rather than V / K (  1 -y l  y 2 / ~ I l )  in their notation, this latter arising 
from their omission of thc term ADV2T in their version of our equation (6). 

The computed da ta  provided hy (4utkowic.z-Krusin et al. (1979h) hardly (.overed 
thc range of our experiments, which was not surprising in vicw of the dependence 
on four scparate paramctcrs. ('onsryucntly we made independent computations using 
thcir eciuations (14)-( 17) for even modtw in thcir approximation again using the Cyber 
170-730 and single-prc ion arithmctic. Initially we attempted t o  reproduce the 
results of thcir figure. 7 ,  tl obtainod agrvemcnt to within 5 'yo using their expression 
(15), t hr, srnallcst discrc.panc.y occurring for t h r  four lower curvcs and the largest for 
the  case f'r = 5. S r  = 9 ,  D/P2 = 2 in their notation. We had no su 
expression (14). whivh gcncratcd discontinuous values of R ,  as H was varied, even 
using dou bl(~-prwision arithnirhtic.. and we arc still in c.orrespondenc.e with these 
authors on this point. Pinally wc uscd thcir cxpression (15), but  with values for the 
four prarncttv-s appropriate. to our c.xpcriments and derived from da ta  such as those 
in tablc 1 Thc results of this last c*al(wlation a r t  listed in table 5 and discussed further 
in $4 2 .  
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3. Experiments on liquid 3He/4He mixtures 
3.1. Cryostat and cell 

The RB experimental cell used for the measurements to be described is suspended 
inside a stainless-steel vacuum can by a rigid support of stainless steel and epoxy 
construction, providing good thermal isolation of the cell from the vacuum-can walls. 
The can is rigidly attached to the top plate of a liquid-helium cryostat via thin-wall 
evacuated stainless-steel tubing and is surrounded by a pumped superfluid liquid- 
helium bath maintained a t  a fixed temperature TB between 1.4 K and 2.0 K depending 
on the mixture concentration in use. 

The details of the cell are shown in figure 4. The volume occupied by liquid mixture 
is cylindrical with diameter 2.48 cm, height 0.21 cm and axis vertical, and hence has 
aspect ratio r = 6.25. The upper and lower plane horizontal boundaries are oxygen-free 
high-conductivity copper machined flat and subsequently polished with crocus cloth, 
providing isothermal surfaces. These boundaries are separated by a cylindrical cell 
wall of low-conductivity thin-wall (0.025 cm) stainless-steel tubing silver-brazed 
vacuum-tight onto the copper boundaries. The cell is filled through a small hole 
(0.025 cm diameter) in one of the plates from a 0.025 cm internal-diameter stainless- 
steel capillary tube. The end of each copper plate is machined to form a bobbin around 
which is wound in bifilar fashion a coil of insulated Eureka wire of diameter 0.006 em. 
Each coil is varnished in position and has electrical resistance 190 SZ and is used for 
applying heat to the appropriate boundary. Two electrical carbon resistance 
thermometers are thermally anchored to each plate. This is achieved by coating each 
thermometer in varnish, wrapping i t  completely with a piece of copper foil before 
the varnish sets and subsequently bolting the foils to tapped holes in each plate. 
Further thermal contact between thermometer and plate is achieved by taking a few 
turns of each connecting lead a,round a copper post screwed into the plate just before 
the leads are soldered to  the resistance. 

The plate with the fill line is termed the ‘ controlled ’ or C-plate since its temperature 
is regulated a t  temperature Tc through an electronic temperature controller to within 
10-6K utilizing one of the thermometers (€3,) and the heater H ,  in a negative 
feedback loop with a response time of 0.1 s. This plate is chosen for temperature 
regulation to ensure that heat transported through the fill line capillary does not 
contribute to convection. The heat dissipated in Hc is dumped in the helium bath 
via a thermal link made from a bundle of fine copper wires connected between the 
C-plate and the vacuum can brass top-plate. This maintains a temperature difference 
T, - TB of a few tenths of a degree between cell and bath. The thermal resistance of 
the link is about 500 K W-’ at the temperature of the experiment, and with the heat 
capacity of the mixture (that of the cell material is negligible) provides a time 
constant of about 30 minutes for the cell to achieve equilibrium with the bath. 

The heater HF on the ‘floating’ or F-plate is used to provide the convection heat 
flux into the cell. The thermometer RF on this plate whose temperature is TF is used 
for calibration purposes. The thermometers R,F and R,, are a matched pair whose 
resistance ratio provides information on the temperature difference AT between the 
two boundaries. The cell is capable of being inverted so that the convection heat flux 
can be applied from either above or below. 

Insulated Eureka wire of the same type used for the heater coil is used as electrical 
leads from the resistance thermometers to  the leadthrough terminals on the vacuum 
can. Insulated superconducting Niomax wire of 0.005 cm diameter is used for 
connections to the heater to eliminate Joule heating and to  provide a low thermal 
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FIGURE 4. Experimental cell. ( a )  radiation shield ; ( b )  heater H ,  ; ( c )  resistance-thermometer 
receptacle; ( e )  F-plate; ( f )  stainless-steel cell wall ; (9)  C-plate; (h)  electrical leadthrough; ( i )  PTFE; 
(j) copper-post thermal anchor; (k) copper fill tube; (I) stainless-steel filling capillary; cell height 
d = 2.1 mm; cell diameter D = 2.48 cm. The entire cell may be inverted. 

conductance path between heaters and leadthrough terminals. All electrical leads 
are thermally anchored a t  T, a t  the leadthroughs by connecting each to a short piece 
of enamel-insulated copper wire which is wrapped round a small hollow copper post 
constructed as part of the C-boundary and which holds the PTFE insulated 
leadthrough connecting terminals. These precautions ensure that heat carried 
through the leads from the F-boundary is minimized since the F-boundary is only 
a few millikelvins above the C-boundary during an experimental run. Heat transport 
through radiation into the F-plate is also minimized by surrounding it by a copper 
radiation shield maintained a t  T, by bolting i t  to the C-boundary. The F-plate is thus 
thermally isolated except through the sample mixture and the stainless-steel cell wall. 

At the cell leadthroughs the leads are changed to lower-resistance 0.025 cm 
diameter Eureka wire and pass to the top of the vacuum can where they are thermally 
anchored to the can top-plate and then pass out of the cryostat via evacuated 
stainless tubes. This arrangement prevents lead resistance changes resulting from 
helium bath level fluctuations. The use of Eureka alloy also reduces the sensitivity 
of the leads resistance to  temperature. 

The resistance RF and R,  are measured by separate manually balanced a.c. 
Wheatstone bridges capable of detecting changes of lop3 R,  which is 10 times greater 
than the estimated uncertainty in the leads resistance caused by temperature changes 
during the course of an experimental run. Consequently the leads resistance is 
included in the calibration of RF and R,. All the resistance thermometers are a few 
kR at the temperature of the experiment with sensitivities ( 1 / R )  dR/dT - 1 so that 
the temperature resolution of the bridges is 

TheratioS = RDF/(RDF + RDC) ismeasuredto 10-6withanautomaticself-balancing 
K. 
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ratio-transformer bridge (Model AW7, Automatic Systems Laboratories) which has 
separate voltage and current leads so that leads resistance is not included, and again 
provides us with a resolution of about lop6 K in our measurement of AT. 

3.2.  Electronic equipment 

Most of our measurements are in the form of continuous (S, Y)-recorder plots 
(heating curves) of the temperature difference AT across the cell against the power 
W being dissipated in HF. The Y-terminals of the recorder are driven by a voltage 
ramp linear in time which is also used as the input of an analog square-root device 
(Analog Devices AD534L) whose output terminals are connected across H F .  
Consequently the amplitude of the original voltage ramp is proportional to  the power 
W.  The power sweeper can provide ramp rates between 0.25 pW h-' and 30 pW 
h-l and powers between 0 and 20 pW into HF. The X-terminals of the recorder 
are driven by the output of a digital-to-analog converter. The input of this device 
is any parallel set of consecutive binary-coded decimal digits of the 6-decade 
automatic bridge up to  a maximum of four. Normally we used the three least 
significant, giving the effect of an amplification by a factor of lo3 of changes AS in 
the balance ratio of the bridge. The maximum value of AT ever measured (7 mK) was 
small enough that AS was always linear in AT to within 1 yo. A block diagram of the 
electronic equipment is shown in figure 5. 

3.3.  Mixture samples 

The 3He-4He gas mixtures were made by filling two known volumes with pure 
samples of each isotope to measured pressures and then transferring one sample out 
of its volume into the other volume with a Toepler pump of small dead volume. The 
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molar concentration of each mixture was determined to 1 yo from a knowledge of the 
pressures and volumes. The Toepler pump was also used to pump the gas mixture 
into the fill line through a cold trap. The fill line passed through the pumped 4He 
bath causing the gas to condense and fill the cell, which was cooled through the 
thermal link to the bath. The concentration of the liquid in the cell was measured 
a t  the start of each experimental run by measuring the A-transition temperature of 
the mixture (see $3.5) and inferring the concentration from the 3He-4He phase 
diagram (Roberts & Sydoriak 1960; Gasparini & Moldover 1969), this procedure 
providing a precision of 0.1 yo and agreeing with the less-accurate volumetric 
determination. 

3.4, Thermometer calibration 
The resistance thermometers RF and R,  were calibrated between 1.8 K and 2.172 K 
by allowing heat exchange between the cell and the superfluid bath through low 
pressure 4He gas in the can. Heaters HF and H ,  were not used during this procedure. 
The bath temperature was determined by measuring its vapour pressure with a 
McLeod gauge and using the 1958 4He vapour pressure tables (White 1979). The 
resulting calibrations were fitted to the three-parameter formula 

1 B 
-=  AlnR+-  
T In R 

(White 1979) using a least-squares technique. 
Calibration of the ratio S was achieved with the can and cell evacuated, holding 

the C-cell boundary a t  a fixed temperature T, and supplying a variable power to  H F .  

The resulting AT was determined from measurements of T, and TF through the 
previous calibration and tabulated against the measured A S  = S-So, where So is the 
value of S with the cell at T, and zero heat from H F .  So was found to be linear in 
T and A S  proportional to AT, and were fitted using standard linear regression 
formulae. 

3.5. Experiments 

All the experimental work described here was performed near the A-transition to take 
advantage of the unusual changes in the mixture parameters described in $ 1 .  The 
behaviour of these parameters depends critically on the temperature difference 
t = T-T,. Consequently it was judged essential to  redetermine the h-transition of 
the mixture prior to each experimental run with the can evacuated. This was achieved 
by successively noting the values of S corresponding to zero power (S,) and 10 pW 
of power (SB) from HF with the cell C-boundary temperature regulator set a t  a 
particular value of R,. The value R,, at which the fluid nearest the F-boundary first 
goes superfluid could then be determined from the cusp in a plot of SB - S,  against 
R,, this method relying on the cusp in the thermal conductivity of a mixture a t  T, 
(Ahlers 1970). The absence of a cusp in a plot of SA against R,  was evidence that 
unknown heat leaks into H F  were no larger than 0.1 pW. 

After the A-point location, the C-boundary controller was reset to a value R,  
corresponding to the desired value of R,, - R,  and heating curves were plotted as 
described in $3.2. For those heating curves where at the start of the ramp the power 
was zero and the bridge ratio was So there was initially a region where S - So increased 
in proportion to W .  In  many cases above some critical power W, the gradient became 
abruptly smaller, and for W > W, the curve exhibited either a new linear region or 
a region where thermal oscillations of period of order 20 minutes were superimposed 
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FIGURE 6. Heating curve. The steps in the curve are instrumental and associated 

with the self-balancing mechanism of the automatic bridge. 

on an average increase of AS with W .  Figure 6 shows a typical heating curve of this 
latter type. 

Exploratory work on heating rates showed that W, was smaller when the power 
was decreased through W, than when it was increased. The difference between these 
two determinations of Wc diminished with heating rate, and was less than 5 % of Wc 
when the heating rate was reduced to  1 pW hour-l. Consequently most of our heating 
curves were plotted at this heating rate. 

Any heating curve showing the features described above provides information on 
the Rayleigh number at the convection onset from the temperature difference at 
which the change in gradient occurs. We obtained heating curves over a range of 
temperatures corresponding to  0 < t < 150 mK and for the four molar concentrations 
X = 0.016, 0.079, 0.134 and 0.208, and (except for X = 0.208) both with the heat 
applied from below (p > 0) and from above (p < 0). 

3.6. Experimental results on the onset of convection 
Our results are summarized in figure 7 and table 5, which shows the dependence on 
t = T-T, of the critical temperature difference AT, across the cell a t  the point of 
occurrence of the change in heating curve gradient. All the data have been 
recalculated from the heating curves since our preliminary publication (Lee et al. 
1979). 

When heating from below, p > 0, we find that for each concentration ATc is small 
for large t ,  becoming larger as t is reduced towards a value t ,  where AT, appears to 
diverge, t ,  increasing with concentration. For t < t ,  no change in gradient occurs up 
to AT = 10mK. For t > t ,  and ATc greater than about 1 mK the convection state 
shows time dependence, with oscillations in the heating curve of the order of 0.1 mK 
amplitude and period of order 20 minutes. Oscillations of irregular shape were 
maintained for over two hours if the power ramp was stopped just after the change 
in gradient had occurred. The frequencies were not investigated systematically, but, 
for comparison, in the oscillatory regime the mass and thermal relaxation times d 2 / D  
and d2/DT are of order 30 minutes and 2.5 minutes respectively. For AT, less than 
about 1 mK the convection state appears to be stationary although oscillations with 
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FIQURE 7 .  Experimental data on critical temperature difference AT, showing dependence on 
temperature difference T-T, and 3He molar concentration X. AT, is positive when heating from 
below. Representative error bars correspond to the uncertainty in determining the position in the 
change of slope of the heating curves. Symbols correspond to SHe molar fractions as follows: 0, 
0.016; 0 ,  0.079; A, 0.134; 0, 0.208. 

period in excess of one hour and amplitude less than 0.01 mK might not have been 
detected. 

When heating from above, P < 0, we observed gradient changes in the heating 
curves without oscillations, for each of the three molar concentrations 0.016, 0.079 
and 0.134. The gradient change becomes smaller as t is increased, and becomes 
impossible to detect when t = t,. Above t ,  there is no clear indication of any change 
in heating-curve slope up to AT = 10 mK. Below t,  the magnitude of ATc decreases 
as the temperature is reduced towards the A-point. No data with P < 0 exist for molar 
concentration 0.208. 

The parameter t was computed from the quantity R, - R,, using the calibration 
described in $3.4. Thus the mean cell temperature is assumed to be Tc rather than 
the mean $(Tc + TF), and raises a question as to the extent to which the fluid sample 
is Boussinesq. Since the properties of 3He-4He mixtures vary most rapidly with 
temperature when t is small, the smallness of the parameter AT,/t is of interest. When 
P < 0, ATc decreases as t becomes smaller, in the main because of the divergence of 
the mass-diffusion coefficient D ,  and this ensures that AT,/t  is never greater than about 
0.1 for our measurements. WhenP > 0, ATc/t is largest near t = t,, where the ATc data 
diverge, and has maximum values of 0.40, 0.19, 0.16 and 0.11 respectively for the 
four molar concentrations in increasing order of magnitude. For t - t ,  > 50 mK, Tc/t 
is of order decreasing with increasing t .  

9 F L M  135 
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4. Data reduction and comparison with theory 
4.1. Fluid parameters 

The reduction of our data to dimensionless numbers requires a knowledge of the 
thermodynamic parameters p, C,, Pc, PT and (aA/ac) , ,  ,, and the transport coefficients 
k,, K ,  7 and D for liquid 3He-4He mixtures over the range of 3He concentrations and 
temperatures applicable to our experiments. These ‘primary ’ parameters are obtained 
from direct experiments reported in the literature where available and can be used 
to calculate ‘secondary’ parameters which include DT and v and the dimensionless 
quantities A ,  H and the various Rayleigh numbers. An exercise of this type has been 
reported for liquid 4He (Barenghi, Lucas & Donnelly 1980) using least-square 
cubic-spline fits to the data. 

For mixtures the necessity of interpolating to the concentrations used in our 
experiments is an additional complication. In  our preliminary account of this work 
we fitted smooth curves manually to data selected by us as being the most reliable 
and performed concentration interpolation using low-order polynomial fits. Recently 
a reliable and comprehensive set of data on (avM/dT),, p ,  (avM/ax)T, p ,  k,, K and D 
have become available to us (Gestrich & Meyer 1982; Meyer 1982, private commun- 
ication; Gestrich, Walsworth & Meyer 1983), where vM is the molar volume. 
Least-square cubic-spline fits have been made by us to all of these data except 
( t b M / a x ) , ,  for interpolating to the concentrations and temperatures used by us. 
These fits replace the ones used in our earlier analysis (Lee et al. 1979) and have made 
a substantial difference to the results of the analysis. The main reasons for this are 
that the new data on D are an order of magnitude smaller than those deduced from 
the diffusion relaxation times of Ahlers & Pobell (1974) and the existence of 
quantitative data on k ,  much further above the h-transition than the old data of 
Lucas & Tyler (1977) and Tanaka & Ikushima (1978) prohibits the use of k ,  as an 
adjustable parameter. Specific notes on the data sources used in this paper now follow. 

In  calculating p, the limiting h-transition values of the molar-volume data of 
Kierstead (1976) were interpolated to our concentrations and used over the entire 
experimental temperature range since the variation of vM over this range for a given 
concentration is less than 1 %. The numerical values used were 27.4, 27.5, 28.3 and 
28.9 cm3 mol-l a t  molar concentrations of 0.016,0.079,0.134 and 0.208 respectively. 

For the specific heat C ,  we used the data of Gasparini & Moldover (1969) on Cx, s, 

the specific heat at  saturated vapour pressure, since the difference between Cx, and 
C,(X) is small (Ahlers 1976) over our temperature range. 

A mean value of 0.62 for PC was used over all concentrations and temperatures. 
This was obtained by numerically differentiating the tabular data of Kierstead (1976) 
and taking a mean of the data at 1.8 K over molar concentrations between 0.05 and 
0.25. This procedure is justified by the observation that PC does not vary by more 
than 10 yo over a temperature range of 1.5 K < T < 1.8 K and a molar concentration 
range of 0.05 < X < 0.35 according to Kierstead’s (1976) data. Just prior to 
submission of this paper we became aware of the calculation of (avM/dx)T, in the 
critical region near the superfluid transition, by Gestrich et al. (1983), from molar 
volume data using a thermodynamic relation. These data show that the variation 
of Pc is still less than 10 yo except within 1 mK of the h-transition (which if included 
increases the total variation to 20 %). For example for a 15 % mixture we determine 
from the graphs of Gestrich et al. that Pc is 0.57 at T,, and 0.63 and 0.69 at 
temperatures of 1 mK and 100 mK above T, respectively. This variation is no greater 
than the uncertainty in many other parameters. 
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Gestrich et al. in preference to the diffusion-time-constant data of Ahlers & Pobell 
(1974) in view of the considerable precautions taken by the former in establishing 
the boundary conditions in their experimental cell and the uncertainty in converting 
time constants to diffusion coefficients in the latter. 

4.2. Data reduction and comparison of results with theory 

All the data on the fluid parameters, of which table 1 is a sample, were used to 
calculate the ‘secondary’ parameters discussed in $4.1 and hence to convert the 
experimental data on AT, as functions of T- TA and X to the critical value R, crit of 
the Rayleigh number R, as a function of H using (9). R, was chosen because for 
stationary convection the theoretical dependence of the critical value R,, on H was 
less complicated than either R, or R,, ; in particular R,, = - 720 independent of H 
for the zero-a branch of solutions for H < 0 and H 3 3.85. It was possible to vary H 
very widely during the experiments simply by adjusting the magnitude of T -  TA for 
all the concentrations used, the main reason for this being that PT changes sign about 
7 mK above TA and kT is changing rapidly at this temperature so that large variations 
in the denominator of the third factor of the expression 

are easy to achieve. The results of this conversion of the data to RIcrit values is 
displayed in table 5 .  

In figures 8 and 9 the experimental RlCrit values are compared with theory both 
for stationary and oscillatory convection. The solid curves correspond to stationary 
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convection theory and are the calculated values R,,(H) discussed in $2.3. The 
predicted Rayleigh numbers shown in figured 8 and 9 for the onset of oscillatory 
convection are values of R,,(Pr, Sc', A ,  H) calculated as described in $2.4 with the 
parameters Pr, Sc', A and H corresponding to the values of T -  TA and X for which 
all the experimental data were taken. Consequently RlCrit and R,, points appear as 
pairs with common H-values. These calculations are also listed in table 5 together 
with the associated dimensionless critical frequencies w, and wavenumbers a,, and 
fall into two regimes. In  regime I H < 0 and RG > 0, so that the critical values R,,, w, 
and a were evaluated a t  RG minima. In  regime I1 H > 0 and RG < 0, so that in this 
case the critical values are evaluated a t  RG maxima. However, in this second regime 
solutions could only be found provided IRGmaxl was less than about los. In  both 
regimes where solutions existed R,, > 0. 

The representative experimental errors shown in figures 7-9 correspond to the 
uncertainty in determining the position of the changes in slope of the heating curves. 
Systematic errors arising from the fluid-parameter data sources are very difficult to 
estimate, and we have not attempted to include them. 

For all the experimentally accessible range of regime I, -500 < H < 0, there is 
reasonable agreement between experimental R, crit values obtained when heating 
from below (ATc > 0, RlCrit > 0) and the R,, computed data obtained using the 
oscillatory theory of Gutkowicz-Krusin et al. (1979a, b ) .  Recall that oscillatory 
behaviour was always observed in the experiments in this range except when ATc 
was less than about 1 mK (this corresponds to - 10 < H < 0). Figure 9 shows part of 
this range of H in detail. 

Oscillatory behaviour was also observed when heating from below (ATc > 0, 
RlCrit > 0) in the experimentally accessible range of regime I1 H, < H < 500, where 
H, is the value of H corresponding to T -  TA = t,. The agreement between the RlCrit 
data and the computed R,, is best for X = 0.134 and worst for X = 0.016, where in 
this latter case experiment and theory differ by more than the experimental error. 
The range of T -  TA used in the experiments for the concentration X = 0.208 turned 
out to be unsuitable for comparison with theory since the computed values of - RG 
are too large to obtain solutions. 

As explained in $3.6 in the experimentally accessible range of regime 11, 
0 < H < H,,, convection onset was only observed when heating from above (ATc < 0, 
R, crit < 0) ,  and there was no sign of oscillatory behaviour. However, the experimental 
data for RIcrit lie below the computed values for stationary convection, and the 
difference is well outside experimental error, the data for X = 0.016 lying closest and 
that for X = 0.208 furthest. 

5. Discussion 
The reduction of our data for the onset of convection in normal liquid 3He-4He 

mixtures to the (Rlcrit ,  H)-plots shown in figures 8 and 9 is our best attempt at a 
comparison with theory given the present incomplete state of data on thermodynamic 
and transport parameters in these mixtures. We not that near its singularity the 
magnitude and sign of the parameter H is particularly sensitive to  uncertainty in the 
parameters &, k, and pT. 

Nonetheless, the agreement between theory and experiment is much better in the 
oscillatory region than in the stationary region. One reason for this lies in the fact 
that oscillatory convection is only observed when T -  TA 2 t ,  well outside the critical 
region of the A-line so that the primary parameters are varying comparatively slowly 
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with temperature. Consequently systematic errors in the temperature dependence of 
these parameters is less serious. Another reason may follow from our observation that, 
with heating from above, all the mixture thermal conductivities as measured from 
the apparently preconvecting regions of the heating curves were between 10 and 
30 yo higher than the non-convecting data of Gestrich et al. (1983) interpolated 
to our concentrations. This was not the case when heating from below, when we 
obtained broad agreement with these authors. It seems plausible to us that we may 
have been observing a convective state transition higher than the onset when heating 
from above. Critical temperature differences ATc corresponding to R, crit = - 720 
would be of order 10 pK, and a t  the time of taking our measurements our equipment 
was not designed to accurately examine a preconvection region where AT, has the 
above order-of-magnitude value. Although our finite aspect ratio will increase the 
magnitude of the theoretical Rayleigh number for stationary convection, the 
calculations of Charlson & Sani (1970) show that this effect is of order 10% and 
much too small to account for the discrepancy between theory and experiment. 

Much experimental work on the Rayleigh-BBnard instability remains to be done 
on normal 3He-4He mixtures near the A-transition. Measurement of oscillation 
frequencies and the Nusselt-number-Rayleigh-number dependence near onset a t  
various concentrations and temperatures would have special interest, since they could 
be compared with calculations by Gutkowicz-Krusin et al. (1979a, b )  not utilized in 
this report. Good agreement with onset theory should then, we hope, stimulate 
further studies of finite-amplitude effects such as the first formation of layers or 
aperiodic behaviour. 

We are grateful to Mr M. Ardron for his contribution to  the computing effort and 
to Mr G. West for the construction of the cryogenic cell. This work was supported 
in part by grants from the Science and Engineering Research Council. 

Appendix. Normal-mode approach to convection in mixtures 
I n  rewriting (5)-(7) in the context of changes c’ and T in the concentration and 

temperature, i t  is natural to  transform to a normal mode representation where the 
amplitudes of the two independent diffusive modes A and B are, in one form, 

and where 

The expressions for xA and xB are arbitrary to the extent of multiplicative constants. 
Details of the transformation are given by, for example, Mountain (1965) and Lucas 
& Tyler (1977). While in general the amplitudes are linear combinations of c’ and T’, 
as kT+O (the thermohaline limit), DA --f D and DB-t DT, so that the A-mode becomes 
a pure mass mode with amplitude proportional to  c‘ and the B mode a pure thermal 
mode with amplitude proportional to  T .  Under this transformation a standard linear 
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stability analysis transforms (5)-(7) to the following set of equations expressed in 
dimensionless quantities and in the notation of Chandrasekhar (1981) : 

where 

and PT = - ( l /p)  (ap/aT),, are the thermal and solutal 
expansion coefficients respectively. 

In these equations XA(z ) ,  X , ( z )  and W(z)  are the amplitudes of small departures 
from the initial values of xA,  xB and u, the vertical component of u, and have a 
common x ,  y, t dependence exp [i(k, x +  k ,  y)  + p t ] .  In addition the transformation has 
been made to dimensionless variables a = kd, IJ = p d 2 / v ,  x --f x l d ,  y --f y / d ,  z + z / d  - 8, 
where k2 = k i  + k;. Equations (A 1)-(A 3) have a structure identical with those of the 
linearized thermohaline problem, the difference between the two problems lying in 
the boundary conditions. Knobloch (1980) discusses this point in some detail. 

The boundary conditions most appropriate to our experiments are those where the 
horizontal plates are rigid, perfectly conducting and impermeable and correspond to 

and p, = - ( l /p)  (ap/ac)T, 

W = D, W = 0, (A 4) 

at the plates where z = f 8. Since our experiments were performed with an aspect ratio 
of 6.25, the effect of the sidewalls is not considered and seems justified by the analysis 
of Charlson & Sani (1970). 

To obtain the exact solution for stationary convection one sets B = 0 in (A 1)-(A 3) 
to exclude oscillatory solutions and assumes even solutions for W ,  X A  and X, .  Then 

( D ; - U ' ) ~ W  = -Ra2W 

defines the Rayleigh number 

R = a473 = RT(( 1 + A )  (1 + S )  + 8 D T / D ) ,  (A 7) 

where RT = gd4PPT/vDT and S = - Pc k T / P T  T ,  and application of the boundary 
conditions (A 4)-(A 6) yields the condition 

f(Qo7 rll? Q Z ,  a )  + Hg(q0, Q 1 ,  P 2 )  = 0, (A 8) 
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f ( a o ,  ~ 1 , 9 2 ,  a )  = ((PI + ~2 43)  sinh q1+ (ql 4 3  - q2)  sin q2 

- (cosh ql + cos q2)  F(qo)} a tanh $, (A 9) 

g(qOtq1, 4 2 )  = (d+& ( ~ o ~ h ~ l - ~ o s q ~ ) - { ( q ~ - q ~  43)  sinhql-(ql 43+q2)sinp2}J'(p,) 
(A 10) 

and H = D,/{D( 1 + A )  (1 + 1/8)}. In the above equations 

q1 = d/aa{(l +b)+(~ +7+72)4}4, q2 = a1/3a27/q,, 

q0 = a(7-1)f ,  J'(qo) = -qotaniqo (7 3 11, 

Po = a(1 -7) f ,  F(q0) = qotanhiqo (7 < I), (A 11) 

following the notation of Chandrasekhar (1961). This condition is the same as that 
obtained by Gutkowicz-Krusin et al. ( 1 9 7 9 ~ )  except that their definitions of $ 
(equivalent to our H )  and the Rayleigh number are in error corresponding to the 
omission discussed in 3 2.1. 

R E F E R E N C E S  

AHLERS, G. 1970 Thermal conductivity of a 3He-4He mixture near the superfluid transition. Phys. 

AHLERS, G. 1975 Fluctuations, Instabilities and Phase Transitions (ed. T. Riste), p. 323. Plenum. 
AHLERS, G. 1976 In  The Physics of Liquid and Solid Helium, vol. 1 (ed. J. B. Ketterson and 

AHLERS, G. & POBELL, F. 1974 Massdiffusivity of 3He-4He mixtures near the superfluid transition. 

BARENOHI, C. F., LUCAS, P. & DONNELLY, R. J. 1981 Cubic spline fits to thermodynamic and 

CALDWELL, D. R. 1970 Non-linear effects in a Rayleigh-BBnard experiment. J. Fluid Mech. 42, 

CHANDRASEKHAR, S.  1961 Hydrodynamic and Hydromagnetic Stability. Clarendon. 
CHARLSON, G. S. & SANI, R. L. 1970 Thermoconvective instability in a bounded cylindrical fluid 

layer. Intl J. Heat Mass Transfer 13, 1479-1496. 
DA COSTA, L. N., KNOBLOCH, E. & WEISS, N. 0. 1971 Oscillations in double-diffusive convection. 

J. Fluid Mech. 109, 2543. 
DE GROOT, S .R .  & MAZUR, P. 1962 Non-Equilibrium Thermodynamics, chaps. 3 and 11. 

North-Holland. 
FETTER, A. L. 1981 Onset of convection in dilute superfluid 3He-4He mixtures. Physica 107B, 

149-150. Also preprints to be published. 
GASPARINI, F. & MOLDOVER, M. R. 1969 Specific heat of 3He-4He mixtures very near the A-line. 

Phys. Rev. Lett. 23, 749-752. 
GERSHUNI, G. Z. & ZHUKHOVITSKII, E. M. 1976 Convective Stability of Incompressible Fluids, chap. 

7. Israel Program for Scientific Translations, Jerusalem. 
GESTRICH, D. & MEYER, H. 1982 Transport properties in 3He-4He mixtures near the superfluid 

transition. Bull. A m .  Phys. SOC. 27, 516. 
GESTRICH, D., WALSWORTH, R. & MEYER, H. 1983 Transport properties in 3He-4He mixtures near 

the superfluid transition. Preprint. 
GUTKOWICZ-KRUSIN, D., COLLINS, M. A. & ROSS, J. 1979a Rayleigh-BBnard instability in 

nonreactive fluids. I. Theory. Phys. Fluids 22, 1443-1450. 
GUTKOWICZ-KRUSIN, D., COLLINS, M. A. & ROSS, J. 1979b Rayleigh-BBnard instability in 

nonreactive fluids. 11. Results. Phys. Fluids 22, 1451-1460. 

Rev. Lett. 24, 1333-1336. 

K. H. Benneman), chap. 2. Wiley. 

Phys. Rev. Lett. 32, 144-147. 

transport properties of liquid *He above the A-transition. J. Low Temp. Phys. 44, 491-504. 

161-175. 



Rayleigh-Be'nard convection in liquid 3He-4He mixtures 259 

HAUCKE, H., MAENO, Y., WARKENTIN, P. & WHEATLEY, J. 1981 Time-dependent thermal 

HUPPERT, H. E. & MOORE, D. R. 1976 Non-linear double-diffusive convection. J .  Fluid Mech. 78, 

HUPPERT, H. E. & MOORE, D. R. 1976 Non-linear diffusive convection. J. Fluid Mech. 78,821-854. 
HURLE, D. T. J. & JAKEMAN, E. 1969 Significance of the Soret effect in the Rayleigh-Jeffreys 

HURLE, D. T. J. & JAKEMAN, E. 1971 Soret-driven thermosolutal convection. J. Fluid Mech. 47, 

HURLE, D. T. J., JAKEMAN, E. & PIKE, E. R. 1967 On the solution of the BBnard problem with 

KIERSTEAD, H. A. 1976 Dielectric constant, molar volume, and phase diagram of saturated liquid 

KNOBLOCH, E. 1980 Convection in binary fluids. Phys. Fluids 23, 1918-1920. 
LANDAU, L. D. & LIFSHITZ, E. M. 1959 Fluid Mechanics, chap. 6. Pergamon. 
LEE, G., LUCAS, P., TYLER, A. & VAVASOUR, E. 1978 The BBnard instability in a 3He-4He mixture. 

LEE, G . ,  LVCAS, P. & TYLER, A. 1979 BBnard instability measurements in 3He-4He mixtures near 

LUCAS, P. & TYLER, A. 1977 Thermal diffusion ratio of a 3He-4He mixture near its A-transition: 

MOUNTAIN, R. D. 1965 Spectral structure of critical opalescence: binary mixture. J. Res. Natl 

NIELU, D. A. 1967 The thermohaline Rayleigh-Jeffreys problem. J .  Fluid Mech. 29, 545-558. 
ROBERTS, T. H. & SYDORIAK, S. J. 1960 Sound velocity, phase separation, and lambda transitions 

RYSKEWITSCH, M. G. & MEYER, H. 1979 Concentration susceptibility of 3He-4He mixtures near 

SCHECHTER, R. S., PRIQOQINE, I. & HAMM, J. R. 1972 Thermal diffusion and convective stability. 

SCHECHTER, R. S., VERLARDE, M. G. & PLATTEN, J .  K. 1974 The two component BBnard problem. 

STEINBERQ, V. 1981 a Stationary convective instability in a superfluid 3He-4He mixture. Phys. 

STEINBERQ, V. 1981 b Oscillatory convective instability in a superfluid 3He-4He mixture. Phys. 

TANAKA, M. & IKUSHIMA, A. 1978 Thermal transport coefficients in SHe-4He mixtures near the 

TANAKA, M , IKUSHIMA, A. & KAWASAKI, K. 1977 Thermal conductivities of 3He-4He mixtures 

VERLARDE, M. G. & SCHECHTER, R. S. 1972 Thermal diffusion and convective stability. 11. An 

WARKENTIN, P. A,, HAUCKE, H. J., LUCAS, P.  & WHEATLEY, J. C. 1980 Stationary convection 

WEBELER, R. W. H. & ALLEN, G. 1972 Lambda-point measurements of ~ p , ,  for pure 3He and 

WHITE, G. K. 1979 Experimental Techniques in Low-Temperature Physics. Clarendon. 

convection in dilute solutions of 3He in superfluid "He. J. Low Temp. Phys. 44, 505-533. 

821-854. 

problem. Phys. Fluids 12, 2704-2705. 

667-687. 

boundaries of finite conductivity. Proc. R .  SOC. Lond. A 296, 46-75. 

3He-4He mixtures. J. Low Temp. Phys. 24,497-512. 

J Phys. (Paris) 41 (C6), 178-179. 

their lambda temperatures. Phys. Lett. 75A, 81-84. 

the onset of heat flush. J. Low Temp. Phys. 27, 281-303. 

Bur. Standards 69A, 523-525. 

of 3He-4He mixtures. Phys. Fluids 3, 895-902. 

the superfluid transition. J. Low Temp. Phys. 35, 103-133. 

Phys. Fluids 15, 379-386. 

Adv. Chem. Phys. 26, 265-301. 

Rev. A24, 976987. 

Rev. A24, 2584-2594. 

lambda line. Phys. Lett. MA, 402-403. 

on the lambda line at low 3He concentrations. Phya. Lett. 61A, 119-121. 

analysis of the convected fluxes. Phys. Fluids 15, 1707-1714. 

in dilute solutions of 3He in superfluid "He. Proc. Nut1 Acad. Sci. 77,6983-6987. 

for three 3He-4He mixtures. Phys. Rev. AS, 182&1827. 


